
Chapitre 6

Transitions de phase

6.1 Stabilité des potentiels thermodynamiques

Afin de déterminer les critères de stabilité locale des potentiels ther-
modynamiques du gaz parfait, on se base sur les expressions de la température,
de la pression et du volume établies dans l’exercice 4.7. Les expressions T (S, V )
et T (S, p) de la température d’un gaz parfait sont,
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et les expressions de la pression et du volume d’un gaz parfait sont,
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où le volume V0, la pression p0 et l’entropie S0 sont des constantes.

1) Montrer que la courbure locale de l’énergie interne est positive (6.23),
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2) Montrer que la courbure locale de l’énergie libre est négative (6.41),
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3) Montrer que la courbure locale de l’enthalpie est négative (6.44),
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4) Montrer que la courbure locale de l’énergie libre de Gibbs est positive (6.47),
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6.5 Abricotiers arrosés pour résister au gel

Des fleurs d’abricotiers couvertes de glace sont modélisées par un cube
de glace. On suppose que les fleurs ont une masse et une capacité thermique
négligeables. Étant donné que les fleurs se trouvent piégées dans la glace, elles
sont à l’équilibre thermique avec la glace. Afin de protéger les fleurs d’abricotiers
du gel, les arboriculteurs aspergent leurs arbres avec de l’eau. On va donc
supposer qu’il y a une couche d’eau sur la glace (fig. 6.3). En tout temps, il y
a alors coexistence d’eau et de glace à l’équilibre chimique et thermique à la
température de fusion Tf de la glace. De plus, on suppose qu’il y a du gel, ce
qui signifie que l’air est plus froid que les fleurs recouvertes de glace. L’air a
une pression p ext constante et une température T ext = Tf − ∆T constante.

Fig. 6.1 Fleurs d’abricotiers piégées dans un cube de glace recouvert d’eau. Le transfert
de chaleur de la glace à température Tf vers l’air à température Tf − ∆T est décrit par
le courant de chaleur IQ qui passe à travers la couche d’eau d’aire A, d’épaisseur ` et de
conductivité thermique κ.

On modélise la couche d’eau comme une paroi de conductivité thermique κ,
d’aire latérale A et d’épaisseur ` entre le bloc de glace et l’air. On considère que
l’évaporation de l’eau est négligeable. Au temps t, le bloc de glace est constitué
de Ns (t) moles de glace et la couche d’eau de N` (t) moles d’eau. On cherche
à déterminer l’intervalle de temps ∆t durant lequel le système formé de glace
et d’eau peut rester à la température de fusion de la glace Tf avant que toute
l’eau ait été transformée en glace, c’est-à-dire N` (∆t) = 0. On suppose que la
décroissance du nombre de moles d’eau est linéaire durant l’intervalle de temps
∆t. Pour un temps t > ∆t, la glace se refroidit et sa température tend alors
vers la température T ext = Tf − ∆T de l’air qui joue le rôle de réservoir de
chaleur. En arrosant leurs abricotiers, les arboriculteurs cherchent à éviter un
tel refroidissement afin de préserver les fleurs du gel.

1) Expliquer pourquoi la température de fusion de la glace Tf est constante.

2) Déterminer le courant de chaleur IQ de la glace vers l’air à travers la couche
d’eau à l’aide de la loi de Fourier (3.22).

3) Déterminer le nombre de moles d’eau N` (t) comme fonction du temps
t 6 ∆t en termes du courant de d’eau I`.

4) Exprimer le courant de chaleur IQ en fonction de la chaleur latente molaire
de fusion de la glace `s→`.
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5) Déterminer l’intervalle de temps ∆t durant lequel il y a coexistence d’eau
et de glace.

6) Dans le cas où les fleurs d’abricotiers ne sont recouvertes ni de glace ni d’eau,
déterminer l’évolution de la température T (t) des fleurs, qu’on modélise
comme des solides formés de N ′ moles de matière, de surface A′, d’épaisseur
`′ et de conductivité thermique κ et évaluer numériquement le temps de
thermalisation,

τ =
3N ′R

A′
`′

κ′

Application numérique

N` (0) = 5 · 10−2 mol, A = 2 cm2, ``→g = 4 · 104 J mol−1, ∆T = 5 K
κ/` = κ′/`′ = 40 W K−1 m−2, N ′ = 1 · 10−2 mol, A′ = 1 cm2.

6.9 Modèle de coexistence de phases

On modélise la coexistence de phases d’une solution liquide conte-
nant deux substances à une pression donnée. Soit NA le nombre de moles de
substance A et NB le nombre de moles de substance B. On définit la concen-
tration de la substance A comme c = NA/ (NA +NB) où 0 6 c 6 1. L’énergie
libre de Gibbs est donnée par l’expression,

G (T,NA, NB) = NART ln
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)
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où ∆U > 0 est une énergie d’interaction entre les substances et les deux pre-
miers termes trouveront une justification au chapitre 8

(1)
. La condition globale

de stabilité requiert que l’énergie libre de Gibbs du système G (T,NA, NB) soit
une fonction convexe des variables extensives NA et NB .

1) Étudier le comportement de la fonction sans dimension g (β, c) =
G (T,NA, NB) / (RT (NA +NB)) en termes des paramètres sans dimen-
sion c et β = ∆U/RT > 0.

2) Esquisser le graphique de la fonction g (β, c) où 2 < β 6 4 ln (2) est
constant.

3) Montrer que si 2 < β 6 4 ln (2), il existe un domaine de concentration c
où le système se sépare en deux phases. Déterminer les proportions r1 et
r2 des phases 1 et 2 en fonction de la concentration c et des concentrations
c0 et 1 − c0 des minima de la fonction g (β, c).

(1)
Peter Atkins, Julio de Paula, Atkins’ Physical Chemistry, Oxford University Press, 2002,
chap. 6, p. 186.
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6.11 Température de fusion de l’eau salée

On considère un bloc de glace en équilibre avec de l’eau salée. Le
potentiel chimique µs (T ) de la glace dépend de la température T et le poten-
tiel chimique de l’eau salée µ` (T, 1 − c) dépend de la température T et de la
concentration de sel c d’après le modèle suivant,

µ` (T, 1 − c) = µ` (T ) +RT ln (1 − c)

où 1 − c est la concentration d’eau douce. Cette équation sera justifiée au
chapitre 8. Déterminer la variation ∆T de la température de fusion de l’eau
par rapport à la température de fusion Tf de l’eau douce en fonction de la
concentration de sel c et de la chaleur latente de fusion `s→`, dans la limite
c� 1 et ∆T � Tf .


